ibloch23 Fly

Code No: E-10105

FACULTY OF SCIENCE

B.A. / B.Sc. (CBCS) II Semester (Regular / Backlog) Examination, June / July 2023

Subject: Mathematics
Paper – II: Differential Equations

Time: 3 Hours

Max. Marks: 80

PART - A

Note: Answer any eight questions.

 $(8 \times 4 = 32 \text{ Marks})$

1. Solve
$$y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$$
.

2. Solve
$$(1+x)\frac{dy}{dx} - xy = 1 - x$$
.

3. Solve
$$\frac{dy}{z^2y} = \frac{dy}{z^2x} = \frac{dz}{y^2x}$$
.

4. Solve
$$(p + y + x)(xp + y + x)(p + 2x) = 0$$
.

5. Solve
$$y = yp^2 + 2px$$
.

6. Solve
$$(y - px)(p - 1) = p$$
.

7. Solve
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 6\frac{dy}{dx} = 0$$
.

8. Solve
$$(D^2 - 4)y = x^2$$
. 117

9. Solve $(D^2 - 3D + 2) = 2x^2 + 3e^{2x}$ by using the method of undetermined coefficients. 12.

11. Given that y = x is a solution $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0, x \neq 0$. Then find the general solution of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x$.

11. Explain Legendre's linear equation.

12. Form a partial differential equation by eliminating the constants h, k from $(x-h)^2 + (y-k)^2 + z^2 = c^2$.

PART - B

Note: Answer all the questions.

 $(4 \times 12 = 48 \text{ Marks})$

13. a) Solve
$$(1 - x^2) \frac{dy}{dx} + 2xy = x(1 - x^2)^{1/2}$$
 (OR)

b) Solve
$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{-y(z^2+x^2)} - \frac{dz}{z(x^2+y^2)}$$
 (OR)

14. a) Reduce $xyp^2 - (x^2 + y^2 + 1)p + xy = 0$ to clairaut's form and find its singular solution (OR)

b) Bacteria in a certain culture increase at a rate proportional to the number present. If the number doubles in one hour, how long it takes for the number to triple?

15. a) Solve
$$(D^2 - 4D + 4)y = 8(x^2 + e^{2x} + \sin 2x)$$
 (OR)

b) Solve
$$\frac{d^2y}{dx^2} + \frac{2dy}{dx} + y = x \cos x.$$
 In 9

16. a) Solve
$$x^2D^2y - xDy - 3y = x^2logx$$
 (OR)

b) Solve
$$(x^2 - y^2 - z^2)p + 2xyq = 2xz$$
.

500%

Code No: D-6205

FACULTY OF SCIENCE

B.A. / B. Sc. (CBCS) II - Semester (Regular & Backlog) Examination,

June / July 2022 Subject: MATHEMATICS Paper- II: Differential Equations

Time: 3 Hours

Max. Marks: 80

PART - A

Note: Answer any eight questions.

 $(8 \times 4 = 32 \text{ Marks})$

1. Solve
$$(1-x)dy + (1-y)dx = 0$$
.

2. Solve
$$\frac{dy}{dx} - cosec2xy = \frac{1}{2}Sec^2x$$
.

2. Solve
$$\frac{dy}{dx} - cosec2xy = \frac{1}{2}Sec^2x$$
.
3. Solve $\frac{dy}{mz-ny} = \frac{dy}{nx-lz} = \frac{dz}{ly-mx}$.

4. Solve
$$p^2 + 2py \cot x = y^2$$
.

5. Solve
$$y + px = x^4p^2$$
.

6. Solve
$$p = \log(px - y)$$
.

7. Solve
$$\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^3} + 11\frac{dy}{dx} + 6y = 0$$
.

8. Solve
$$(D^2 + 2D + 1)y = 2x + x^2$$
.

9. Solve
$$(D^2 + 4D + 4)y = 4x^2 + 6e^x$$
 by using method of undetermined coefficients.

10. Solve
$$x^2y'' - xy' + y = 0$$
. Given that $y_1 = x$ as a solution.

11. Explain Cauchy-Euler equation.

12. By eliminating the constants, find the parital differential equation from the relation

$$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$$

PART - B

Note: Answer all the questions

 $(4 \times 12 = 48 \text{ Marks})$

13. a) Solve
$$(1 + y^2)dx = (Tan^{-1}y - x)dy$$

b) Solve $\frac{dx}{x(y^2 - z^2)} = \frac{dy}{y(z^2 - x^2)} = \frac{dz}{z(x^2 - y^2)}$
(OR)

b) Solve
$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$$

14. a) Solve $x^2p^2 + yp(2x + y) + y^2 = 0$ by reducing it to clairaut's form by using the substitution y = u and xy = v. (OR)

b) Bacteria in a certain culture increase at a rate proportional the number present, If the number N increases from 1000 to 2000 in 1 hour, how many are present at the end of 1.5 hours?

15. a) Solve
$$(D^2 - 2D + 5)y = e^{2x} \sin x$$

b) Solve
$$(D^2 + 1)y = x^2 \sin 2x$$
.

16. a) Solve $(D^2 + 4D + 4)y = 3xe^{-x}$ by using the method of variation of

(OR)

b) Solve $\frac{x^2d^2y}{dx^2} + \frac{xdy}{dx} - 4y = x^2$ by using Cauchy- Euler equation.

Code No. 18036/O

FACULTY OF SCIENCE

B.A, B.Sc. (CBCS) II - Semester Examination, Sep/Oct 2021

Subject: Mathematics

Paper: II - Differential Equations

Time: 2 hours Max. Marks: 80

Part - A

Note: Answer any four questions.

 $(4 \times 5 = 20 \text{ Marks})$

- 1. Solve $(x^3e^x-my^2)dx + mxydy=0$.
- 2. Solve p=log(px-y).
- 3. Solve (D4+8D2+16)y=0.
- 4. Solve $(D^3+D^2-D-1)y = Cos 2x$.
- 5. Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} y = 0$ if y=x is a solution.
- 6. Solve $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = 2 \log x$.
- 7. Solve $p^2+q^2 = x+y$.
- 8. Solve $\frac{\partial^2 z}{\partial x^2} + 4 \frac{\partial^2 z}{\partial y^2} = 0$ by separation of variables.

Part - B

Note: Answer any three questions.

 $(3 \times 20 = 60 \text{ Marks})$

- 9. Solve $(x^3y^3 + x^2y^2 + xy + 1) ydx + (x^3y^3 x^2y^2 xy + 1) xdy = 0$.
- 10. Solve $p^2 + 2py \cot x = y^2$.
- 11. Solve $(D^2-2D+5)y = e^{2x} \sin x$.
- 12. Solve $(D^2-4D+4)y = 8(x^2+e^{2x}+\sin 2x)$.
- 13. Solve $(D^2-3D+2)y = 2x^2+3e^{2x}$ by method of undetermined coefficients.
- 14. Solve $(D^2+4D+4)y = 3x\overline{e}^x$ by method of variation of Parameters.
- 15. Solve (y+z)p + (z+x)q = x + y.
- 16. Solve $(p^2+q^2)y = qz$ by charpit's method.

B.A./B.Sc. (CBCS) III - Semester (Backlog) Examination, May/June 2024

Subject: Mathematics Paper – III: Real Analysis

Time: 3 Hours

PART - A

Max. Marks: 80

(8x4=32 Marks)

Note: Answer any Eight questions.

1. Find the limit the sequence $S_n = \frac{2n+3}{3n+4}$ and show that it is unique.

- 2. Show that the sequence $S_n = \frac{\cos n\pi}{3}$ is not monotonic.
- 3. Prove that every convergent sequence is a Cauchy sequence.
- 4. If $f: A \to B$ and $g: B \to C$ are mappings such that f is continuous at x_0 and g is continuous at $f(x_0)$, then prove that gof is continuous at x_0 .
- 5. Explain the properties of continuous functions.
- 6. Prove that, if f is continuous on [a,b] then it is uniformity continuous on [a,b].
- 7. If f and g are two functions such that f and g are derivable at $a \in R$, then prove that f + g and fg are derivable at $a \in R$.
- 8. Using mean value theorem, find the value of c for the function $f(x) = lx^2 + mx + n$ in the interval [a,b]
- 9. Find the Taylor's series expansion of $f(x) = \log(1+x)$.
- 10. Give an example to show that every bounded function is not Riemann integrable.
- 11. Prove that every monotonic function is Riemann integrable.
- 12. If f and g are integrable on [a,b] and if $f(x) \le g(x)$ for $x \in [a,b]$, then prove that $\int_a^b f \le \int_a^b g$.

PART - B

Note: Answer all the questions.

(4x12=48 Marks)

- 13.(a) (i) Prove that convergent sequences are bounded.
 - (ii) If the sequence (S_n) converges then prove that every subsequence converges to the same limit.

OR

- (b) (i) State and prove Ratio test.
 - (ii) Prove that $\sum \frac{1}{n^p}$ converges if and only if p > 1.
- 14.(a) State and prove intermediate value theorem.

OR

- (b) If f is uniform continuous on [a, b] and S_n is Cauchy in [a, b] then prove that $f(S_n)$ is Cauchy sequence in f([a, b]).
- 15. (a) State and prove Rolle's theorem.

OR

- (b) State and prove Taylor's theorem.
- 16. (a) Prove that a bounded function f on [a, b] is Riemann integrable if and only if it is (Darboux) integrable, in which case the values of the integrals agree.

OR

(b) State and prove fundamental theorem of calculus - II.

Code No: F-15205

FACULTY OF SCIENCE

B.A./B. Sc. (CBCS) III - Semester Examination, December 2023/January 2024

Subject: Mathematics Paper - III: Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

 $(8 \times 4 = 32 \text{ Marks})$

Note: Answer any eight questions.

- 1. Show that $\lim_{n\to\infty}\frac{1}{n^2}=0$.
- 2. Define bounded sequence and give an example.
- Determine the nature of the series $\sum_{n=1}^{\infty} \frac{2n}{n^3 + 6}$.
- 4. Let $A \subseteq R$. If $f: A \to R$ is a continuous function on A, Then show that |f| is also continuous A.
- 5. State intermediate value theorem.
- 6. If $f: R \to R$ is defined as $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

then show that f is continuous on R .

- 7. State Rolle's Theorem.
- Using mean value theorem, show that $|\sin x \sin y| \le |x y|$ for all $x, y \in R$.
- 9. Evaluate $\lim_{x\to\infty} \left(1-\frac{3}{x}\right)^x$.
- 10. If the function $f:[0,b]\to R$ is defined as $f(x)=x^2$, then find L(f,P) where $P = \left\{0, \frac{b}{n}, \frac{2b}{n}, ..., b\right\} \text{ is a partition of } [0, b].$
- 11. If $f:[a,b]\to R$ is Riemann integrable on [a,b] and $c\in R$, then show that $\int_{-\infty}^{b} c f = c \int_{-\infty}^{b} f$.
- 12. Evaluate $\lim_{h\to 0} \frac{1}{h} \int_{1}^{5+h} e^{t^2} dt$.

PART - B

Note: Answer all the questions.

 $(4 \times 12 = 48 \text{ Marks})$

13. (a) If (s_n) converges to S and (t_n) converges to t then show that (s_n+t_n) converges to s+t.

(b) Determine the nature of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$ (iii) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{3n+5}$

14. (a) Let g be a strictly increasing function on an interval J such that g(J) is an interval I. then show that g is continuous on J.

- (b) (i) Prove that $x 2^x = 1$ for some $x \in (0,1)$.
 - (ii) Find the maximum value of $f(x) = x^3 6x^2 + 9x + 1$ on [0, 5).
- 15. (a) State and prove Mean value theorem.

- (b) State and prove Taylor's theorem.
- 16. (a) If $f:[a,b] \to R$ is a monotonic function, then show that f is Riemann integrable.

 - (b) (i) Evaluate $\int_{0}^{1} x \sqrt{1-x^2} dx$.
 (ii) Evaluate $\int_{0}^{\frac{1}{2}} Sin^{-1}x dx$.

8(112) W/14

Code No: E-10215

Max. Marks: 80

FACULTY OF SCIENCE

B.Sc. (CBCS) III - Semester Examination, December 2022 / January 2023

Subject: Mathematics Paper – III: Real Analysis

Time: 3 Hours

PART - A

(8 x 4 = 32 Marks)

1. Define Limit of Sequence and prove that the limit of sequence is unique.

- 2. Prove that all bounded monotone sequences converge.
- 3. Prove that every cauchy sequence is convergent.
- 4. Prove that, if f and g are continuous then f + g and fg are continuous.
- 5. Mention properties of continuous function.
- 6. Show that $f(x) = x^2$ is uniformly continuous on the interval [0,2].
- 7. Prove that every differentiable function is continuous.
- 8. Discuss the applicability of Rolle's Theorem for f(x) = |x| in the interval [-1,1].
- 9. Find the Taylor's series expansion of $f(x) = e^x$.
- 10. Explain Riemann Integration.

Note: Answer any eight questions.

- 11. Prove that every continuous function is Riemann Integrable.
- 12. If $f \in R[a, b]$ then prove that $|f| \in R[a, b]$.

PART - B

Note: Answer all the questions.

 $(4 \times 12 = 48 \text{ Marks})$

- 13. (a) (i) For a sequence $\{S_n\}$ of positive real numbers, prove that $\lim S_n = +\infty$ if and only If $\lim \left(\frac{1}{S_n}\right) = 0$.
 - (ii) If $\{S_n\}$ converges to a positive real number 's' and $\{t_n\}$ is any sequence then prove that $\lim \sup s_n t_n = s \lim \sup t_n$.

(OR)

- (b) (i) Show that the series $\sum \frac{n}{3^n}$ is convergent.
 - (ii) State and prove Alternating series theorem.
- 14. (a) If f is continuous on [a, b], then prove that it is bounded and attains it's supremum and infimum.

(OR)

- (b) Prove that if f is continuous on [a, b] if and only if it is uniformly continuous on [a, b].
- 15. (a) State and prove Generalized Mean value theorem.

(OR)

- (b) State and prove Taylor's theorem.
- 16. (a) Prove that a bounded function f on [a,b] is integrable if and only if for each $\epsilon > 0$ there exists a partition p of f[a,b] such that $U(f,p) L(f,p) < \epsilon$.

(UK)

(b) State and Prove Fundamental theorem of calculus-I

B.Sc./B.A. (CBCS) III Semester Examination, March 2022

Subject: Mathematics

Paper-III: Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Note: Answer any eight questions.

(8 x 4 = 32 Marks)

- 1. Define limit of sequence and evaluate the limit of $S_n = \frac{2n+3}{3n+4}$.
- 2. Prove that convergent sequences are bounded.
- 3. Find the sub sequential limits of $S_n = \sin \frac{n\pi}{3}$.
- If f is continuous at x_0 and g is continuous at $f(x_0)$, then prove that the composite function $g_0 f$ is also continuous at x_0 .
 - 5. Suppose g is strictly increasing function on an interval J such that g(J) is an interval. Then prove that g is continuous on J.
- 6. Show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on $[a, \infty)$ where a > 0.
- Prove that every differentiable function is continuous.
 - 8. Discuss the applicability of Rolle's theorem for $f(x) = \frac{x}{on} [-1,2]$.
 - 9. Find the Taylor series for f(x) = Sinx about zero.
 - 10. If f is a bounded function on [a, b] then prove that $L(f) \leq U(f)$.
 - 11. Prove that every continuous function is Riemann Integrable.
 - 12. If f is Integrable on [a, b], then prove that |f| if Integrable on [a, b].

PART - B

Note: Answer any four questions.

 $(4 \times 12 = 48 \text{ Marks})$

- 13. Prove that a sequence is a convergent sequence if and only if it is a Cauchy sequence.
- 14. State and prove Alternating series theorem.

- 15. Suppose f is a continuous real valued function on a closed interval [a, b]. Then prove that f is a bounded function. Also prove that f assumes its maximum and minimum values on [a, b].
- 16. Prove that a real valued function f on (a,b) is uniformly continuous on (a,b) if and only if it can be extended to a continuous function \bar{f} on [a,b]
 - 17. State and prove Rolle's theorem
- 18. State and prove Taylor's theorem.
 - 19. Prove that a bounded function of on [a,b] is Integrable if and only if for each $\epsilon > 0$ there exists a partition P of [a,b] such that $U(f,p) L(f,p) < \epsilon$.
- 20. State and prove Fundamental Theorem of calculus I.

02-12-202)11.11.

Code No. 18073/O/BL

FACULTY OF SCIENCE

B.A. / B.Sc. III Semester (CBCS) Examination, November / December 2021

Subject: Mathematics
Paper – III: Real Analysis

Time: 2 Hours

Max. Marks: 80

PART - A

Note: Answer any four questions.

 $(4 \times 5 = 20 \text{ Marks})$

- 1 Define limit of sequence and evaluate the limit of $S_n = \frac{3n+1}{4n-1}$.
- 2 Prove that all bounded monotone sequences converge.
- 3 Prove that every sequence $[S_n]$ has monotonic subsequence.
- 4 Show that the series $\sum \frac{n}{3^n}$ is convergent.
- 5 Find the interval of convergence for the series $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$.
- 6 Show that $f_n(x) = \frac{x}{1 + nx^2}$, $x \in R$ converges uniformly on R.
- 7 Give an example of a function which is not Riemann Integrable.
- 8 If f and g are integrable on [a,b] and if $f(x) \le g(x)$ for $x \in [a,b]$ then prove that $\int_{a}^{b} f \le \int_{a}^{b} g.$

PART - B

Note: Answer any three questions.

 $(3 \times 20 = 60 \text{ Marks})$

- 9 (i) Prove that all bounded monotone sequences converge.
 - (ii) Given a sequence $S_n = \frac{S_{n-1}^2 + 5}{2S_{n-1}}$ for $n \ge 2$ and $S_1 = 5$ then show that

$$\sqrt{5} < S_{n+1} < S_n \le 5$$

for $n \ge 1$.

- 10 (i) Prove that convergent sequences are Cauchy sequences.
 - (ii) Prove that Cauchy sequences are bounded.
- 11 Suppose $\{S_n\}$ is any sequence of non-zero reals, then prove that

$$|Lim|\inf\left|\frac{S_{n+1}}{S_n}\right| \leq |Lim|\inf\left|S_n\right|^{\frac{1}{n}} \leq |Lim|\sup\left|S_n\right|^{\frac{1}{n}} \leq |Lim|\sup\left|\frac{S_{n+1}}{S_n}\right|.$$

12 State and prove alternating series theorem.

- 13 (i) Show that $f_n(x) = x^n$, $x \in [0,1]$ converges point wise but not uniformly on [0,1].
 - (ii) Suppose $[f_n]$ is a sequence of functions defined and uniformly Cauchy on a set $S \subseteq R$. Then prove that there exists a function f on S such that $f_n \to f$ uniformly on S.
- 14 (i) Prove that the uniform limit of continuous function is continuous.
 - (ii) State and prove Weierstrass M-Test.

JE CHOSE WALLS

- 15 (i) Prove that a bounded function f on [a, b] is integrable if and only if for each $\in > 0$ there exists partition P such that $U(f, p) L(f, P) < \in .$
 - (ii) If f and g are integrable on [a, b] then prove that f + g is integrable and $\int_a^b f + g = \int_a^b f + \int_b^b g.$

10 (i) Praye that converge it and the converge it is detailed we are the convergence of

fill A eve that Cauchy sequences are to Indeed

- 16 (i) Prove that every continuous function f on [a, b] is integrable.
 - (ii) State and prove fundamental theorem of Calculus-I.

FACULTY OF SCIENCE BA / B.Sc. III Semester (CBCS) Examination, July 2021

Subject: Mathematics Paper: III - Real Analysis (DSC)

Time: 2 Hours

Max. Marks: 80

Note: Missing data, if any, may be suitably assumed

PART - A

Note: Answer any five questions.

 $(5 \times 4 = 20 \text{ Marks})$

- Show that every cauchy sequence is bounded.
- Determine the nature of the series $\sum_{n=2}^{\infty} \frac{\cos^{\frac{n}{2}} n}{n^2}$.
- Let $f: R \to R$ be a function defined as follows

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
Then show that f is continuous at $x = 0$.

- continuous functions defined [a,b] such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Then show that $f(x_*) = g(x_*)$ for at least one $x_* \in [a,b]$.
- 5 Let $f: R \to R$ be a function. Suppose that $|f(x) f(y)| \le (x y)^2$ for all $x, y \in R$. Then show that f is a constant function.
- Find the Taylor series of the function $f(x) = \log (1+x)$ for $-1 < x < \infty$.
- Let $f:[a,b] \to \hat{R}$ be a bounded function. If P, Q are any two partitions of [a,b] such that $P \subseteq Q$ then show that $L(f,p) \le L(f,Q)$.
 - 8 Let $f:[a,b] \to R$ be a Riemann integrable function and $c \in R$. Then show that cf is integrable and $\int cf = c \int f$.
 - 9 Suppose $t_1 = 1$ and $t_{n+1} = \left(1 \frac{1}{4n^2}\right) t_n$ for $n \ge 1$. Then evaluate limt_n if it exists.
 - 10 Determine whether the series $\sum_{n=2}^{\infty} \frac{\log n}{n^2}$ is convergent.
 - 11 Show that $f_n(x) = \sum \frac{x^n}{1+x^n}$ converges for $x \in [0,1)$.
 - 12 Prove that if f is integrable on [a,b] then f2 is also integrable on [a,b].

PART - B

Note: Answer any three questions.

(3 x 20 = 60 Marks)

13 (i) Show that a sequence is a convergent sequence if and only if it is a Cauchy sequence.

(ii) Evaluate $\lim_{n \to \infty} \frac{1}{n!} (n!)^{\frac{1}{n}}$.

14 (i) State and prove the Root test.

(ii) Evaluate $\sum_{n=2}^{\infty} \left(-\frac{1}{3}\right)^n$.

15 State and prove intermediate value theorem.

16 (i) Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on $[a, \infty)$ where a > 0, $a \in R$.

(ii) If $f:[a,b]\to R$ is continuous, then show that f is uniformly continuous.

17 (i) State and prove Rolle's Theorem.

(ii) Show that $ex \le e^x$ for all $x \in R$.

18 (i) Show that the function $f(x) = \frac{x}{\sin x}$ is a strictly increasing function on $\left(0, \frac{\pi}{2}\right)$.

(ii) Evaluate $\lim_{x\to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right)$.

19 Let f be a bounded function defined on [a,b]. If a < c < b and f is integrable on [a,c] and on [c,b], then show that f is integrable on [a,b] and $\int f = \int f + \int f$.

: 20 Let $g:[a,b] \to R$ be a continuous function on [a,b] and differentiable on (a,b). If g' is integrable on [a,b] then show that $\int g^1 = g(b) - g(a)$.

B.A. / B.Sc. III Semester (CBCS) Examination, November / December 2021

Subject: Mathematics Paper: III Real Analysis

Time: 2 Hours

Max. Marks: 80

PART - A

Note: Answer any four questions.

(4 x 5 = 20 Marks)

- 1 Show that the sequence $\{(-1)^n\}$ does not converges.
- 2 Let $a_n \ge 0 \forall n \ge 1$. If $\sum_{n=1}^{\infty} a_n$ is convergent then show that $\sum_{n=1}^{\infty} a_n^2$ is convergent.
- 3 Prove that $x2^x = 1$ for some $x \in (0,1)$.
- 4 Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is discontinuous at x = 0.
- 5 Show that $|\cos x \cos y| \le |x y|$ for all $x, y \in \mathbb{R}$
- 6 Evaluate $\lim_{x\to 0} \frac{1-\cos 2x-2x^2}{x^4}$.
- 7 If $f:[a,b] \to \mathbb{R}$ is a bounded function, then show that $L(f) \le U(f)$.
- 8 If $f:[a,b] \to \mathbb{R}$ is a monotonic function, then show that f is Riemann integrable.

PART - B

Note: Answer any three questions.

 $(3 \times 20 = 60 \text{ Marks})$

show that f is different able they

- 9 (i) Show that every convergent sequence is bounded.
 - (ii) Show that an increasing bounded sequence is convergent.
- 10 (i) Determine the nature of the series $\sum_{n=1}^{\infty} \frac{(100)^n}{n!}$
 - (ii) Show that the series $\sum_{n=1}^{\infty} 2^{(-1)^n n}$ is convergent.
- 11 If $f:[a,b]\to \mathbb{R}$ is a continuous function, then show that f is bounded. Further show that there exists $x_0,y_0\in[a,b]$ such that $f(x_0)\le f(x)\le f(y_0)$ for all $x\in[a,b]$
- 12 (i) Show that the function defined by $f(x) = \frac{1}{x^2}$ for $x \in (0,1)$, is not uniformly continuous on (0,1).
 - (ii) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x + 11, is uniformly continuous on \mathbb{R} .

Code No. 10073NEL

13 (i) State and prove the Mean value theorem. (ii) Let f be a differentiable function on (a,b) such that f'(x)=0 for all $x \in (a,b)$. Then show that f is a constant function on (a,b).

Subject Martingan

- 14 Let f be defined on (a,b) where a < 0 < b and suppose that n^{th} derivative $f^{(n)}$ exists on (a,b). Then for each non zero $x \in (a,b)$, show that there is some $y \in (0,x)$ such that $R_n(x) = \frac{f^{(n)}(y)}{n!} x^n$.
- 15 Show that a bounded function $f:[a,b]\to \mathbb{R}$ is integrable if and only if for each $\varepsilon>0$ there exists a partition P of [a,b] such that $U(f,P)-L(f,P)<\varepsilon$.
- 16 Let $f:[a,b]\to \mathbb{R}$ be an integrable function. For $x\in [a,b]$, let $F(x)=\int_a^x f(t)\,dt$. Then show that F is continuous on [a,b]. Further if f is continuous at $x_0\in (a,b)$, then show that F is differentiable at x_0 and $F'(x_0)=f(x_0)$.

Note: Answer any three questions.

9 (i) Show that every convergent sequence is bounded.
(ii) Show that an increasing bounded sequence is converge.

7 If $\gamma: [a,b] \to \mathbb{R}$ is a bounded function, the style metu(γ) < γ (γ) = 0

8 If $f:[a,b] \rightarrow R$ is a monotonic function, then show that f is Riemann megrable.

10 (i) Determine the nature of the series 2 m

(ii) Show that the series $\sum_{i=1}^{\infty} 2^{(i)}$ is convergent.

11 If $f:[a,b] \to R$ is a continuous function, then show that j'is hounded Purior snot that $f:[a,b] \to R$ is a continuous function, then $f(x) \le f(x) \le f(x)$ for all setable that there exists $x_0, y_0 \in [a,b]$ such that $f(x) \le f(x) \le f(x)$

12 (i) Show that the function defined by (in)

continuous on (0,1) R -R defined by (x)= 3x+1. (and (ii) Show that the function fire R defined by (x)= 3x+1.

B.Sc. III-Semester (CBCS) Examination, October / November 2020

Subject : Mathematics (Real Analysis)
Paper – III (DSC)

Time: 2 Hours

Max. Marks: 80

 $PART - A (4 \times 5 = 20 Marks)$

Note: Answer any four questions.

Find $\lim s_n$, where $s_n = \sqrt{n^2 + 1} - n$.

2 Prove that every Cauchy sequence is bounded.

Find the set of subsequential limits of the sequence $\{a_n\}$, where $a_n = n(1 + (-1)^n)$.

4 If a series Σ an converges, prove that $\lim a_n = 0$.

Find the interval of convergence of the series $\sum \frac{x^n}{n}$.

6 Define uniform convergence of a sequence of functions. (Prove that every monotonic function on [a, b] is integrable.

8 Show that $\left| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) dx \right| \le \frac{16\pi^3}{3}$.

 $PART - B (3 \times 20 = 60 Marks)$

Note: Answer any three questions.

9 Let $\langle s_n \rangle$ be a sequence of non-negative real numbers and suppose that $s = \lim s_n$. Then prove that $\lim \sqrt{s_n} = \sqrt{s}$

10 Prove that:

(i)
$$\lim_{n\to\infty} \left(n^{\frac{1}{p}}\right) = 0$$
 for $p > 0$ (ii) $\lim_{n\to\infty} a^n = 0$ if $|a| < 1$.

11 State and prove Ratio-test.

12 If $a_1 \ge a_2 \ge ... \ge a_n \ge ... \ge 0$ and $\lim_{n \to \infty} a_n = 0$ then prove that $\sum_{n = 0}^{\infty} (-1)^{n+1} a_n$ converges.

13 Prove that $(f_n(x))$, where $f_n(x) = \frac{x}{1 + nx^2}$, $x \in \mathbb{R}$, converges uniformly on \mathbb{R} .

14 Show that if the series Σg_n converges uniformly on a set S, then $\lim_{n\to\infty} \sup\{|g_n(x)|: x \in S\} = 0.$

15 Let f and g be integrable on [a, b]. Prove that f + g is integrable and $\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$.

16 State and prove intermediate value theorem for integrals.
